THE DISTANCE MAGIC INDEX OF A GRAPH
dc.contributor.author | Godinho, Aloysius | |
dc.date.accessioned | 2025-06-02T05:30:42Z | |
dc.date.available | 2025-06-02T05:30:42Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Let G be a graph of order n and let S be a set of positive integers with |S| = n. Then G is said to be S-magic if there exists a bijection φ : V (G) → S satisfying P x∈N(u) φ(x) = k (a constant) for every u ∈ V (G). Let α(S) = max{s : s ∈ S}. Let i(G) = min α(S), where the minimum is taken over all sets S for which the graph G admits an S-magic labeling. Then i(G) − n is called the distance magic index of the graph G. In this paper we determine the distance magic index of trees and complete bipartite graphs. | |
dc.identifier.citation | Godinho, A., Singh, T., & Arumugam, S. (2017). The distance magic index of a graph. Discussiones Mathematicae Graph Theory, 38(1), 135-142. | |
dc.identifier.uri | http://rcca.ndl.gov.in/handle/123456789/260 | |
dc.language.iso | en | |
dc.publisher | Discussiones Mathematicae Graph Theory 38 (2018) 135–142 | |
dc.title | THE DISTANCE MAGIC INDEX OF A GRAPH | |
dc.type | Article |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- The_Distance_Magic_Index_of_a_Graph.pdf
- Size:
- 123.43 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: