THE DISTANCE MAGIC INDEX OF A GRAPH

dc.contributor.authorGodinho, Aloysius
dc.date.accessioned2025-06-02T05:30:42Z
dc.date.available2025-06-02T05:30:42Z
dc.date.issued2018
dc.description.abstractLet G be a graph of order n and let S be a set of positive integers with |S| = n. Then G is said to be S-magic if there exists a bijection φ : V (G) → S satisfying P x∈N(u) φ(x) = k (a constant) for every u ∈ V (G). Let α(S) = max{s : s ∈ S}. Let i(G) = min α(S), where the minimum is taken over all sets S for which the graph G admits an S-magic labeling. Then i(G) − n is called the distance magic index of the graph G. In this paper we determine the distance magic index of trees and complete bipartite graphs.
dc.identifier.citationGodinho, A., Singh, T., & Arumugam, S. (2017). The distance magic index of a graph. Discussiones Mathematicae Graph Theory, 38(1), 135-142.
dc.identifier.urihttp://rcca.ndl.gov.in/handle/123456789/260
dc.language.isoen
dc.publisherDiscussiones Mathematicae Graph Theory 38 (2018) 135–142
dc.titleTHE DISTANCE MAGIC INDEX OF A GRAPH
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
The_Distance_Magic_Index_of_a_Graph.pdf
Size:
123.43 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: